21 research outputs found

    Semantic Security and Indistinguishability in the Quantum World

    Get PDF
    At CRYPTO 2013, Boneh and Zhandry initiated the study of quantum-secure encryption. They proposed first indistinguishability definitions for the quantum world where the actual indistinguishability only holds for classical messages, and they provide arguments why it might be hard to achieve a stronger notion. In this work, we show that stronger notions are achievable, where the indistinguishability holds for quantum superpositions of messages. We investigate exhaustively the possibilities and subtle differences in defining such a quantum indistinguishability notion for symmetric-key encryption schemes. We justify our stronger definition by showing its equivalence to novel quantum semantic-security notions that we introduce. Furthermore, we show that our new security definitions cannot be achieved by a large class of ciphers -- those which are quasi-preserving the message length. On the other hand, we provide a secure construction based on quantum-resistant pseudorandom permutations; this construction can be used as a generic transformation for turning a large class of encryption schemes into quantum indistinguishable and hence quantum semantically secure ones. Moreover, our construction is the first completely classical encryption scheme shown to be secure against an even stronger notion of indistinguishability, which was previously known to be achievable only by using quantum messages and arbitrary quantum encryption circuits.Comment: 37 pages, 2 figure

    General Impossibility of Group Homomorphic Encryption in the Quantum World

    Get PDF
    Group homomorphic encryption represents one of the most important building blocks in modern cryptography. It forms the basis of widely-used, more sophisticated primitives, such as CCA2-secure encryption or secure multiparty computation. Unfortunately, recent advances in quantum computation show that many of the existing schemes completely break down once quantum computers reach maturity (mainly due to Shor's algorithm). This leads to the challenge of constructing quantum-resistant group homomorphic cryptosystems. In this work, we prove the general impossibility of (abelian) group homomorphic encryption in the presence of quantum adversaries, when assuming the IND-CPA security notion as the minimal security requirement. To this end, we prove a new result on the probability of sampling generating sets of finite (sub-)groups if sampling is done with respect to an arbitrary, unknown distribution. Finally, we provide a sufficient condition on homomorphic encryption schemes for our quantum attack to work and discuss its satisfiability in non-group homomorphic cases. The impact of our results on recent fully homomorphic encryption schemes poses itself as an open question.Comment: 20 pages, 2 figures, conferenc

    Quantum Indistinguishability for Public Key Encryption

    Get PDF
    In this work we study the quantum security of public key encryption schemes (PKE). Boneh and Zhandry (CRYPTO'13) initiated this research area for PKE and symmetric key encryption (SKE), albeit restricted to a classical indistinguishability phase. Gagliardoni et al. (CRYPTO'16) advanced the study of quantum security by giving, for SKE, the first definition with a quantum indistinguishability phase. For PKE, on the other hand, no notion of quantum security with a quantum indistinguishability phase exists. Our main result is a novel quantum security notion (qIND-qCPA) for PKE with a quantum indistinguishability phase, which closes the aforementioned gap. We show a distinguishing attack against code-based schemes and against LWE-based schemes with certain parameters. We also show that the canonical hybrid PKE-SKE encryption construction is qIND-qCPA-secure, even if the underlying PKE scheme by itself is not. Finally, we classify quantum-resistant PKE schemes based on the applicability of our security notion. Our core idea follows the approach of Gagliardoni et al. by using so-called type-2 operators for encrypting the challenge message. At first glance, type-2 operators appear unnatural for PKE, as the canonical way of building them requires both the secret and the public key. However, we identify a class of PKE schemes - which we call recoverable - and show that for this class type-2 operators require merely the public key. Moreover, recoverable schemes allow to realise type-2 operators even if they suffer from decryption failures, which in general thwarts the reversibility mandated by type-2 operators. Our work reveals that many real-world quantum-resistant PKE schemes, including most NIST PQC candidates and the canonical hybrid construction, are indeed recoverable

    Shufflecake: Plausible Deniability for Multiple Hidden Filesystems on Linux

    Get PDF
    We present Shufflecake, a new plausible deniability design to hide the existence of encrypted data on a storage medium making it very difficult for an adversary to prove the existence of such data. Shufflecake can be considered a ``spiritual successor\u27\u27 of tools such as TrueCrypt and VeraCrypt, but vastly improved: it works natively on Linux, it supports any filesystem of choice, and can manage multiple volumes per device, so to make deniability of the existence of hidden partitions really plausible. Compared to ORAM-based solutions, Shufflecake is extremely fast and simpler but does not offer native protection against multi-snapshot adversaries. However, we discuss security extensions that are made possible by its architecture, and we show evidence why these extensions might be enough to thwart more powerful adversaries. We implemented Shufflecake as an in-kernel tool for Linux, adding useful features, and we benchmarked its performance showing only a minor slowdown compared to a base encrypted system. We believe Shufflecake represents a useful tool for people whose freedom of expression is threatened by repressive authorities or dangerous criminal organizations, in particular: whistleblowers, investigative journalists, and activists for human rights in oppressive regimes

    Can you sign a quantum state?

    Get PDF
    Cryptography with quantum states exhibits a number of surprising and counterintuitive features. In a 2002 work, Barnum et al. argued informally that these strange features should imply that digital signatures for quantum states are impossible (Barnum et al., FOCS 2002). In this work, we perform the first rigorous study of the problem of signing quantum states. We first show that the intuition of Barnum et al. was correct, by proving an impossibility result which rules out even very weak forms of signing quantum states. Essentially, we show that any non-trivial combination of correctness and security requirements results in negligible security. This rules out all quantum signature schemes except those which simply measure the state and then sign the outcome using a classical scheme. In other words, only classical signature schemes exist. We then show a positive result: it is possible to sign quantum states, provided that they are also encrypted with the public key of the intended recipient. Following classical nomenclature, we call this notion quantum signcryption. Classically, signcryption is only interesting if it provides superior efficiency to simultaneous encryption and signing. Our results imply that, quantumly, it is far more interesting: by the laws of quantum mechanics, it is the only signing method available. We develop security definitions for quantum signcryption, ranging from a simple one-time two-user setting, to a chosen-ciphertext-secure many-time multi-user setting. We also give secure constructions based on post-quantum public-key primitives. Along the way, we show that a natural hybrid method of combining classical and quantum schemes can be used to "upgrade" a secure classical scheme to the fully-quantum setting, in a wide range of cryptographic settings including signcryption, authenticated encryption, and chosen-ciphertext security

    Can you sign a quantum state?

    Get PDF
    Cryptography with quantum states exhibits a number of surprising and counter-intuitive features. In a 2002 work, Barnum et al. argued that these features imply that digital signatures for quantum states are impossible [7]. In this work, we ask: can all forms of signing quantum data, even in a possibly weak sense, be completely ruled out? We give two results which shed significant light on this basic question. First, we prove an impossibility result for digital signatures for quantum data, which extends the result of [7]. Specifically, we show that no nontrivial combination of correctness and security requirements can be fulfilled, beyond what is achievable simply by measuring the quantum message and then signing the outcome. In other words, only classical signature schemes exist. We then show a positive result: a quantum state can be signed with the same security guarantees as classically, provided that it is also encrypted with the public key of the intended recipient. Following classical nomenclature, we call this notion quantum signcryption. Classically, signcryption is only interesting if it provides superior performance to encrypt-then-sign. Quantumly, it is far more interesting: it is the only signing method available. We develop “as-strong-as-classical” security definitions for quantum signcryption and give secure constructions based on post-quantum public-key primitives. Along the way, we show that a natural hybrid method of combining classical and quantum schemes can be used to “upgrade” a secure classical scheme to the fully-quantum setting, in a wide range of cryptographic settings including signcryption, authenticated encryption, and CCA security

    The Wonderful World of Global Random Oracles

    Get PDF
    The random-oracle model by Bellare and Rogaway (CCS\u2793) is an indispensable tool for the security analysis of practical cryptographic protocols. However, the traditional random-oracle model fails to guarantee security when a protocol is composed with arbitrary protocols that use the same random oracle. Canetti, Jain, and Scafuro (CCS\u2714) put forth a global but non-programmable random oracle in the Generalized UC framework and showed that some basic cryptographic primitives with composable security can be efficiently realized in their model. Because their random-oracle functionality is non-programmable, there are many practical protocols that have no hope of being proved secure using it. In this paper, we study alternative definitions of a global random oracle and, perhaps surprisingly, show that these allow one to prove GUC-secure existing, very practical realizations of a number of essential cryptographic primitives including public-key encryption, non-committing encryption, commitments, Schnorr signatures, and hash-and-invert signatures. Some of our results hold generically for any suitable scheme proven secure in the traditional ROM, some hold for specific constructions only. Our results include many highly practical protocols, for example, the folklore commitment scheme H(m|r) (where m is a message and r is the random opening information) which is far more efficient than the construction of Canetti et al

    Cheater Detection in SPDZ Multiparty Computation

    Get PDF
    In this work we revisit the SPDZ multiparty computation protocol by DamgĂĄrd et al. for securely computing a function in the presence of an unbounded number of dishonest parties. The SPDZ protocol is distinguished by its fast performance. A downside of the SPDZ protocol is that one single dishonest party can enforce the computation to fail, meaning that the honest parties have to abort the computation without learning the outcome, whereas the cheating party may actually learn it. Furthermore, the dishonest party can launch such an attack without being identified to be the cheater. This is a serious obstacle for practical deployment: there are various reasons for why a party may want the computation to fail, and without cheater detection there is little incentive for such a party not to cheat. As such, in many cases, the protocol will actually fail to do its job. In this work, we enhance the SPDZ protocol to allow for cheater detection: a dishonest party that enforces the protocol to fail will be identified as being the cheater. As a consequence, in typical real-life scenarios, parties will actually have little incentive to cheat, and if cheating still takes place, the cheater can be identified and discarded and the computation can possibly be re-done, until it succeeds. The challenge lies in adding this cheater detection feature to the original protocol without increasing its complexity significantly. In case no cheating takes place, our new protocol is as efficient as the original SPDZ protocol which has no cheater detection. In case cheating does take place, there may be some additional overhead, which is still reasonable in size though, and since the cheater knows he will be caught, this is actually unlikely to occur in typical real-life scenarios

    Quantum Security of Cryptographic Primitives

    Get PDF
    We call quantum security the area of IT security dealing with scenarios where one or more parties have access to quantum hardware. This encompasses both the fields of post-quantum cryptography (that is, traditional cryptography engineered to be resistant against quantum adversaries), and quantum cryptography (that is, security protocols designed to be natively run on a quantum infrastructure, such as quantum key distribution). Moreover, there exist also hybrid models, where traditional cryptographic schemes are somehow `mixed' with quantum operations in certain scenarios. Even if a fully-fledged, scalable quantum computer has yet to be built, recent results and the pace of research in its realization call for attention, lest we suddenly find ourselves one day with an obsolete security infrastructure. For this reason, in the last two decades research in quantum security has experienced an exponential growth in interest and investments. In this work, we propose the first systematic classification of quantum security scenarios, and for each of them we recall the main tools and results, as well as presenting new ones. We achieve this goal by identifying four distinct quantum security classes, or domains, each of them encompassing the security notions and constructions related to a particular scenario. We start with the class QS0, which is `classical cryptography' (meaning that no quantum scenario is considered), where we present some classical constructions and results as a preliminary step. Regarding post-quantum cryptography, we introduce the class QS1, where we discuss in detail the problems arising when designing a classical cryptographic object meant to be resistant against adversaries with local quantum computing power, and we provide a classification of the possible quantum security reductions in this scenario when considering provable security. Moreover, we present results about the quantum security and insecurity of the Fiat-Shamir transformation (a useful tool used to turn interactive identification schemes into digital signatures), and ORAMs (protocols used to outsource a database in a private way). In respect to hybrid classical-quantum models, in the security class QS2 we discuss in detail the possible scenarios where these scenarios arise, and what a correct formalization should be in terms of quantum oracle access. We also provide a novel framework for the quantum security (both in terms of indistinguishability and semantic security) of secret-key encryption schemes, and we give explicit secure constructions, as well as impossibility results. Finally, in the class QS3 we consider all those cryptographic constructions designed to run natively on quantum hardware. We give constructions for quantum encryption schemes (both in the secret- and public-key scenario), and we introduce transformations for obtaining such schemes by conceptually simpler schemes from the class QS2. Moreover, we introduce a quantum version of ORAM, called quantum ORAM (QORAM), aimed at outsourcing in a private way a database composed of quantum data. In proposing a suitable security model and an explicit construction for QORAMs, we also introduce a technique of independent interest which models a quantum adversary able to extract information from a quantum system without disturbing it `too much'. We believe that the framework we introduce in this work will be a valuable tool for the scientific community in addressing the challenges arising when formalizing sound constructions and notions of security in the quantum world
    corecore